用户名账户登录  

用户名密码方式登录

QQ登录

只需一步,快速开始

微信登录

手机微信,扫码同步

搜索

↑ ★ → 加入海川企业会员 传播技术与品牌  

 品牌 
【活动】海川定制logo保温杯来了
【参与活动能免费获得】从本月起任何在“建设者”体系中,你的上月建设者分数......
企业会员 第二期招募【特惠】
特惠为 9999元/ 2 年 百万次传播 20241112 详询客服18840911640

[讨论帖] 2021年度化学领域十大新兴技术公布

[复制链接]
6.7K |3

加入千万化工人行列

您需要 登录 才可以下载或查看,没有账号?注册

x
近日,国际纯粹与应用化学联合会(IUPAC)公布了2021年度化学领域十大新兴技术榜单。



2021年度化学领域十大新兴技术
区块链技术Blockchain technology
半合成生命体Semi-synthetic life
超浸润性Superwettability
人工腐殖质Artificial humic matter
RNA和DNA的化学合成Chemical synthesis of RNA andDNA
声化学涂层Sonochemical coatings
生物用化学发光Chemiluminescence for biological use
氨的可持续生产Sustainable production of ammonia
靶向蛋白降解Targeted protein degradation
单细胞代谢组学Single cell metabolomics

区块链技术

数字化的进步使化学创新更具可重复性和可追踪性
区块链可以存储不同类型的信息,但迄今为止最常见的用途是作为交易的数字分类账。值得注意的是,区块链是去中心化的,因此没有任何个人或团体可以控制,并且输入的数据会被永久记录和访问。英国化学家已经尝试使用区块链来跟踪一系列简单的计算,其中每个阶段的过程都被记录下来并在数字分类账**享。一些化工公司已经创建了基于区块链的系统来实现供应链的现代化,从而实现安全交易和持续跟踪货物。

半合成生命体

拓展生物化学和治疗学的新字母
合成核苷酸的产生使化学家能够构建人工生化机器,开发的新系统以最大程度地减少转录和翻译过程中错误的数量。它们为设计靶向治疗提供了新的化学工具,包括用于攻击转移性实体瘤的 Thor-707,目前正在临床试验中。

超浸润性

一个世纪之久的发现提供了新的机会
超浸润材料结合了两种极端状态——疏水性和亲水性——具有独特的流体动力学和反应性。为了创造它们,研究人员从大自然中汲取灵感,例如研究极难弄湿的荷叶。他们在金属、聚合物和纺织品上构建出具有纳米结构的表面,用于潜在的应用,包括分解水、去除污染物、自清洁纺织品、油水分离和相变液体冷却等。

人工腐殖质

为可持续和高效农业设计负碳解决方案
有机物质分解为腐殖质,为土壤添加有价值的养分,但是这个过程会产生二氧化碳和甲烷。因此,人工制造腐殖质更加可持续和高效。当添加到土壤中时,人工腐殖质可以改善土壤质量,提高作物产量并减少肥料使用。目前,有几种方法可以加速有机物的分解——其中热液腐化正在成为其中最吸引人的方案之一。

RNA和DNA的化学合成

COVID疫苗后核酸在药物化学中的应用前景
基于mRNA的COVID疫苗的成功问世,为更多针对癌症、糖尿病和其他传染病的新型疗法铺平了道路。RNA和DNA的化学合成现在是全自动的,并且可以在几个台式合成设备中使用。该技术仍在不断进步,例如使用了与传统喷墨打印机相同的原理,科学家们将不同的DNA 链直接并精确地打印到硅基微反应器中——这些设备在化学、生物技术和医学方面有无数的应用。

声化学涂层

更安全、更耐用、具有增值特性的材料
声化学——使用(超)声波来触发化学反应,具有制造创新材料的巨大潜力,特别是用于抗菌涂层或智能涂层等表面,通过简单的颜色变化就可以检测致病菌的菌株。目前,开发中的应用包括延长食品的保质期,以及提高锂离子电池的性能和稳定性。业界现在正在探索新的可能性,以将这项技术扩大到工业环境中,并开发能够连续生产涂层材料的滚筒制备法(roll-to-rollmethods)。

生物用化学发光

水溶性二氧杂环丁烷提高了生物检测的速度和灵敏度
发光分子在许多应用中都非常有用,无论是在犯罪现场检测血液(鲁米诺)还是在显微镜下照亮生物样本(绿色荧光蛋白)。科学家们还在不断地改进发光分子,以应用于高效二极管、安全信号、生物研究等方面。例如基于二氧杂环丁烷的化学发光探针,即使在没有有机溶剂的帮助下,有水的情况下也能发出明亮的光,这使它们特别适用于对生命系统进行成像。二氧杂环丁烷探针在检测某些类型的肿瘤方面显示出了巨大的前景,甚至有助于区分癌症亚型。

氨的可持续生产

Harber-Bosch工艺的绿色替代品
用于合成氨的哈伯-博世(Haber-Bosch)是有史以来最成功的化学反应之一。但它是高能源密集型的工艺,并且会排放大量二氧化碳,科学家们需要一种可持续的替代途径来生产氨。为了实现这一目标,他们设想了两种互补的战略。一方面,他们从大自然中寻找灵感——特别是细菌和蓝藻中的固氮酶,由于有了铁和钼的辅酶,它们可以减少氮气。另一方面,化学家也利用电的力量来打破三重氮-氮键,同时从水中获取氢原子。如果使用的能源来自可再生资源——风能、水电、太阳能——这个过程就会变得加倍的可持续,因为它避免了对从化石燃料中获得氢气的依赖。

靶向蛋白质降解

利用我们的细胞机制来革新制药业
化学家和生物化学家经常在大自然中找到灵感。靶向蛋白降解的情况也是如此,这是一种具有巨大治疗潜力的创新化学工具。其原理相当简单:利用我们自己细胞的降解途径,以根除有问题的蛋白质。这项技术已经吸引了数十亿的投资,刺激了许多初创企业的诞生,甚至开始了多样化的临床试验。研究人员还探索蛋白酶体降解用于治疗与蛋白质堆积有关的疾病的可能性,包括神经退行性疾病,如帕金森症和阿尔茨海默症。


单细胞代谢组学

分析生物分子,一次一个细胞
单细胞代谢组学可以确定单个细胞的代谢特征。随着成像手段和技术的发展,例如质谱等技术的进步为认识单个细胞提供了新的视角。在冠状病毒泛滥或在未来可能会爆发的未知情况的背景下,单细胞代谢组学将展示其巨大的可能性。一些研究利用它们的力量来更好地了解感染过程以及入侵的病毒与我们的细胞之间的相互作用。

 

发表于 2021-11-15 08:43:59

评分

参与人数 1财富 +5 收起 理由
沙漠里的游鱼 + 5 积极参与

查看全部评分

声明:

本站是提供个人知识管理及信息存储的网络存储空间,所有内容均由用户发布,不代表本站观点。

请注意甄别主题及回复内容中的联系方式、诱导购买等信息,谨防诈骗。

当前内容由会员用户名 威风的奥特曼。 发布!权益归其或其声明的所有人所有 仅代表其个人观点, 仅供个人学习、研究之用。

本主题及回复中的网友及版主依个人意愿的点评互动、推荐、评分等,均不代表本站认可其内容或确认其权益归属,

如发现有害或侵权内容,可联系我站举证删除,我站在线客服信息service@hcbbs.com 电话188-4091-1640 

都是前沿生化网络技术

和传统化学工业不搭嘎呀

 

发表于 2021-11-15 08:57:17

回复

使用道具 举报

等候者VIP会员 VIP会员 | 显示全部楼层       
海川大三  |  头衔:  TA未设置 
已绑手机  
谢谢分享

 

发表于 2021-11-15 09:01:31

回复

使用道具 举报

 

发表于 2021-11-15 10:01:43

回复

使用道具 举报

【发主题】高级


          特别提示:

          本站系信息发布平台,仅提供信息内容存储服务。

         禁止发布上传, 包括但不限于:不能公开传播或无传播权的出版物、无传播权的在行标准规范、涉密内容等
          不听劝告后果自负!造成平台或第三方损失的,依法追究相关责任。

          请遵守国家法规;不要散播涉爆类、涉黄毒赌类、涉及宗教、政治议题、谣言负面等信息   

     

您需要登录后才可以回帖 登录 | 注册

本版积分规则


 

关于我们  -  隐私协议    -  网站声明   -  广告服务   -  企业会员   -  个人会员  -     -   专家智库  -  服务市场    -  APP和微信   -  分类信息   -     -  在线计算  -  单位换算


不良信息举报 0411-88254066  举报中心       在线客服#微信号:  18840911640    电子信箱   service@hcbbs.com   【QQ客服】3153267246   


海川化工论坛网(hcbbs) @Discuz! X3  0.045117 second(s), 51 queries , Redis On.


辽公安备21100302203002号  | 辽ICP备17009251号  |  辽B2证-20170197