① 焊接热裂纹 奥氏体不锈钢由于其热传导率小,线膨胀系数大,因此在焊接过程中,焊接接头部位的高温停留时间较长,焊缝易形成粗大的柱状晶组织,在凝固结晶过程中,若硫、磷、锡、锑、铌等杂质元素含量较高,就会在晶间形成低熔点共晶,在焊接接头承受较高的拉应力时,就易在焊缝中形成凝固裂纹,在热影响区形成液化裂纹,这都属于焊接热裂纹。
总的来说,奥氏体不锈钢具有优良的焊接性。几乎所有的熔化焊接方法均可用于焊接奥氏体不锈钢,奥氏体不锈钢的热物理性能和组织特点决定了其焊接工艺要点。
① 由于奥氏体不锈钢导热系数小而热膨胀系数大,焊接时易于产生较大的变形和焊接应力,因此应尽可能选用焊接能量集中的焊接方法。
② 由于奥氏体不锈钢导热系数小,在同样的电流下,可比低合金钢得到较大的熔深。同时又由于其电阻率大,在焊条电弧焊时,为了避免焊条发红,与同直径的碳钢或低合金钢焊条相比,焊接电流较小。
③ 焊接规范。一般不采用大线能量进行焊接 。焊条电弧焊时,宜采用小直径焊条,快速多道焊,对于要求高的焊缝,甚至采用浇冷水的方法以加速冷却,对于纯奥氏体不锈钢及超级奥氏体不锈钢,由于热裂纹敏感性大,更应严格控制焊接线能量,防止焊缝晶粒严重长大与焊接热裂纹的发生。
④ 为进步焊缝的抗热裂性能和耐蚀性能,焊接时,要特别留意焊接区的清洁,避免有害元素渗透焊缝。
⑤ 奥氏体不锈钢焊接时一般不需要预热。为了防止焊缝和热影响区的晶粒长大及碳化物的析出,保证焊接接头的塑、韧性和耐蚀姓,应控制较低的层间温度,一般不超过150℃。
2. 铁素体不锈钢焊接要点
由于焊接热循环的作用,一般铁素体不锈钢在热影响区的高温区产生敏化,在某些介质中产生晶间腐蚀。焊后经700~850℃退火处理,使铬均匀化,可恢复其耐蚀性。
普通高铬铁素体不锈钢可采用焊条电弧焊、气体保护焊、埋弧焊焊等熔焊方法。由于高铬钢固有的低塑性,以及焊接热循环引起的热影响区晶粒长大和碳化物、氮化物在晶界集聚,焊接接头的塑性和韧性都很低。在采用与母材化学成分相似的焊材且拘束度大时,很易产生裂纹。为了防止裂纹,改善接头塑性和耐蚀性,以焊条电弧焊为例,可以采取下列工艺措施。
① 预热100 ~ 150℃左右,使材料在富有韧性的状态下焊接。含铬越高,预热温度应越高。
② 采用小的线能量、不摆动焊接。多层焊时,应控制层间温度不高于150℃,不宜连续施焊,以减小高温脆化和475℃脆性影响。
③ 焊后进行750 ~ 800℃退火处理,由于碳化物球化和铬分布均匀,可恢复耐蚀性,并改善接头塑性。退火后应快冷,防止出现σ相及475℃脆性。
3. 马氏体不锈钢焊接要点
对于Cr13型马氏体不锈钢,当采用同材质焊条进行焊接时,为了降低冷裂纹敏感性,确保焊接接头塑、韧性,应选用低氢型焊条并同时采取下列措施:
① 预热。预热温度随钢材含碳量的增加而进步,一般在100℃ ~ 350℃范围内。
② 后热。对于含碳量较高或拘束度大的焊接接头,焊后采取后热措施,以防止焊接氢致裂纹。
③ 焊后热处理。为改善焊接接头塑、韧性和耐蚀性,焊后热处理温度一般为650℃ ~ 750℃,保温时间按1h / 25mm计。
① 焊接热过程的控制 焊接线能量、层间温度、预热及材料厚度等都会影响焊接时的冷却速度,从而影响到焊缝和热影响区的组织和性能。冷却速度太快和太慢都会影响到双相钢焊接接头的韧性和耐腐蚀性能。冷却速度太快时会引起过多的α相含量以及Cr2N的析出增加。过慢的冷却速度会引起晶粒严重粗大,甚至有可能析出一些脆性的金属间化合物,如σ相。表1列出了一些推荐的焊接线能量和层间温度的范围。在选择线能量时还应考虑到具体的材料厚度,表中线能量的上限适合于厚板,下限适合于薄板。在焊接合金含量高的ω(Cr)为25 % 的双相钢和超级不锈钢时,为获得最佳的焊缝金属性能,建议最高层间温度控制在100℃。当焊后要求热处理时可以不限制层间温度。